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Soluble theories for the density of states of a spatially 
disordered two-level tight-binding model 

Martyn D Winn and David E Logan 
Physical Chemistry Laboratory, University of Oxford, South Parks Road, 
Oxford OX1 3QZ, UK 

Received 31 May 1989 

Abstract. An analysisis given for the configurationally averaged Green functionsof a random 
multi-level tight-binding model characterised by quenched liquid-like disorder, using graph- 
theoretical methois. An exact self-consistency equation for the average diagonal Green 
function matrix, G(z) ,  is derived, from which follow the partial d_ensities of states (DOS). 
From the exact description, various approximate theories for G(z) may be developed 
systematically. We examine in particular three tractable theories for the case of a two-band 
system: the Hubbard approximation, the Matsubara-Toyozawa approximation and the 
single super-chain approximation (SSCA) which is equivalent to the effective medium approxi- 
mation (EMA) of Roth. With Yukawa transfer matrix elements the SSCA/EMA is solved 
analytically by exploiting direct analogies with the theory of classical binary liquid mixtures. 
For all three theories the material parameter dependence of the DOS is examined sys- 
tematically and comparatively, with particular regard to band overlap effects which may 
lead to a metal-insulator transition. 

1. Introduction 

A detailed understanding of the electronic properties of liquids and amorphous solids is 
in many ways still in its infancy. Even at an idealised one-electron level of description, 
where the numerous facets of electron-electron interactions are ignored, the role of 
disorder must be taken seriously and can lead to profound effects such as disorder- 
induced localisation. From the viewpoint of a solid-state theorist, and granted even a 
one-electron description , the problem of dealing with spatially disordered systems is 
particularly acute due to the absence of an underlying periodicity characteristic of 
crystalline materials. Theories for even the simplest quantities characteristic of spatially 
disordered systems, such as the density of states (DOS), are often computationally 
arduous and somewhat unsystematic in construct. 

Liquid-state theory can, however, help here. Recently, for example, an exact analysis 
has been given (Logan and Winn 1988, hereafter referred to as I) for the configurationally 
averaged Green functions of a one-band tight-binding model characterised by quenched 
liquid-like disorder, using a graph-theoretical analysis originally applied by Wertheim 
(1973) to a problem in the classical dielectric theory of fluids. The essential equation 
governing the structure of the averaged Green functions was found to be formally 
equivalent to the Ornstein-Zernike equation for the pair distribution function of a 
classical liquid. From this, by exploiting additional parallels in liquid-state theory, 
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approximate theories for the DOS can be constructed systematically. This was examined 
further by Winn and Logan (1989, hereafter referred to as 11) who developed in particular 
an approximate single-site theory for the DOS, the single super-chain approximation 
(SSCA). Although formulated differently, it was shown in I1 that the SSCA is equivalent 
to the well known effective medium approximation (EMA) due to Roth (1974,1976). 

The manner in which the SSCA is formulated leads to another connection with 
conventional liquids theory: for a simple model pair distribution function characterising 
the disordered system, the EMA/SSCA for the averaged Green function was shown in I1 
to be mathematically equivalent to the mean spherical approximation for the pair 
distribution function of a classical liquid. This correspondence in turn leads to the 
possibility of analytical solutions to the SSCA/EMA, which were given in I1 for the 
particular case of a Yukawa transfer matrix element. Subsequent computer simulations 
by Bush et a1 (1989a) have shown that this simple analytical theory gives a good descrip- 
tion of the DOS over a substantial range of reduced densities. We note too that recent 
related work by Stratt and Xu (1989a, b) has also demonstrated clearly, by different 
methods, how techniques of liquid-state theory can aid in developing computationally 
tractable theories for the averaged Green functions of topologically disordered systems. 

Most theoretical work on the electronic properties of liquids and amorphous solids, 
at the tight-binding level, has focused on a one-band tight-binding model with a single 
unperturbed level associated with each site. While such a model is relevant to tightly 
bound bands in certain liquid metals, alloys and doped semiconductors, it is clearly 
somewhat restrictive. For many non-simple disordered systems (such as noble and 
transition metals) several different bands, some of which may be degenerate, are impor- 
tant in determining electrical properties, particularly when a metal-insulator transition 
stems from valence/conduction band overlap together with the localising effects of 
disorder, as perhaps occurs in divalent liquid metals. 

In this paper we seek to extend the theory of I and I1 for the averaged Green functions 
to the case of a multi-level per site tight-binding model. Some work has been done on 
this problem, particularly by Yonezawa and co-workers (Yonezawa and Martino 1976, 
Yonezawa et a1 1977) for the specific case of liquid Hg. Our aim here is to develop 
a formally exact description of the problem, and to investigate systematically and 
comparatively different approximate but tractable theories for the DOS. As in I and 11, 
this is achieved by building on parallels to classical liquid-state theory. Section 2 (and 
the beginning of § 3) contains the formal theory; a self-consistency equation is derived 
for the averaged diagonal Green functions (from which follow the partial DOS), and we 
find that the basic equation governing the averaged off-diagonal Green function for an 
n-level tight-binding model is closely related to the Ornstein-Zernike equation for a 
classical n-component liquid mixture. In 4 3 some general features of the exact theory 
are discussed, and we start to examine tractable theories for the DOS beginning with the 
Hubbard approximation which, although simplistic, brings out many features of more 
sophisticated theories. Although most of the formal theory we develop is applicable to 
a general n-level system, specific approximate theories are for simplicity investigated 
for the simple case of a two-level system with Yukawa (modified exponential) transfer 
matrix elements. 

Section 4 contains a brief general discussion of single-site theories for the DOS, 
followed by an analysis of the Matsubara-Toyozawa (1961) approximation (MTA) appli- 
cable to a perfectly random system where the effects of short-ranged structural cor- 
relations are neglected. In § 5 we investigate the two-level SSCA/EMA, which is believed 
to be the most accurate single-site theory for the DOS. As in 11, and by exploiting Blum 
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and Hclye's (1978) solution to the mean spherical approximation for a binary liquid 
mixture, we obtain solutions to the SSCA/EMA for the DOS. Section 6 contains a brief 
discussion of the incorporation of site-diagonal disorder into the problem; for any single- 
site theory this requires only minor modification of the present work. 

Finally, we comment on two additional motivations for this work. First, granted a 
one-electron (or effective one-electron) level of description, we would like ultimately 
to investigate the role of Anderson localisation occurring in a pseudogap formed from 
overlapping bands, a mechanism of possible relevance to the metal-insulator transition 
occurring in divalent liquid metals. Although a theory of localisation in such systems is 
considerably more subtle than calculation of averaged Green functions, a knowledge of 
the DOS is an essential ingredient in such a theory. Second, in a regime of weak disorder 
where states at the Fermi energy are sufficiently extended, a knowledge of the averaged 
Green functions (both diagonal and off-diagonal) is sufficient to provide a reasonable 
estimate of the electrical conductivity. 

2. Green function formalism and topological reductions 

For a given realisation the model system we consider is specified by a tight-binding 
Hamiltonian 

c k  (c,,) is a creation (annihilation) operator for the one-electron (or exciton) state 
associated with level a on site i ,  which has centre of mass position R,. E , ,  is the zero- 
order site energy of level a, and Vtp is the transfer matrix element between level a on 
site i and level /3 on site j .  The sums in (1) run over all Nsites and n levels, and the prime 
in the second site summation excludes the case j = i. The E , ~  may be regarded as 
independent random variables with a given probability distribution P ( { E , @ } )  for any site, 
but to begin with we will neglect site-diagonal disorder and take E,,  = E ,  for all i; 
incorporation of site-diagonal disorder within the framework of any single-site approxi- 
mation to the averaged Green function is straightforward, and will be discussed briefly 
in § 6 .  We will also assume that Vtp depends only on a, /3 and the relative site centre- 
of-mass separation, Vtp = Vnp(R, - R , ) ;  randomness in the transfer matrix elements 
thus arises solely from the spatial disorder. 

For a given realisation of the random system the Green function GfB(z), defined by 

(where 10) is the vacuum state and z = E + iq ( q  4 0+) is the energy), satisfies 

This equation has the formal solution 

Gfp(z)  = [(Z - V)-l]$p (3b)  

where V and 2 are N x N matrices with elements that are themselves n x n matrices 
such that = V f p  and [ 2 ] $ p  = ( z  - E ~ ~ ) ~ ~ ~ S ~ ~ ( [ Z ] $ ~  refers to the (a, /3) element of 
the (i, j )  element of a matrix). We are here interested in the ensemble-averaged Green 
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functions. The ensemble average of any function, f ,  which depends on the centres of 
mass and site energies of any number M S N of sites is defined by 

N n - 1  

( f )  = 2,' 1 * * ' 1 n n [dR, d&,,P({&,p})IfexP(-PQ'N(RN)). (4) 
, = 1  n=O 

Here /3 = l / kT  and Z N  is the configurational integral for a system of N particles inter- 
acting via QN(RN) ,  where RN denotes collectively the site centre-of-mass positions. QN 
embodies explicitly the liquid-like structure of the disordered medium. Although it is 
often convenient to treat QN as a sum of pairwise-additive potentials, this is not a 
necessary restriction, and in what follows QN may include many-body terms. 

The Green functions can clearly be diagonal in both site and level indices, but in 
what follows the term 'diagonal Green function' refers solely to the site indices. The 
ensemble-averaged diagonal Green function is thus given by 

G"p(z) = (G:b(z))  (5a) 

D,(E) = - n-l Im (?""(E + iq). (5b) 

and the averaged density of states (DOS) associated with level a! is obtained from: 

Performing an ensemble average of equation (3a )  for the case j = i, using equation (4) 
with P ( { E ~ , } )  = n, a(&,, - E , ) ,  and noting that the system is translationally invariant 
on average, we find 

z,G@p(z) = 6,+p 1 dR'VnY(R - R')@"(R' - R ) .  
Y 

Here z ,  = z - E,, and G"p(R' - R )  is the ensemble-averaged off-diagonal Green func- 
tion defined by 

p2Gap(R - R ' )  = (X'G$fiL?(Ri - R)S(Rj -RI ) ) .  
i. j 

p = N/V is the number density of sites, where Vis the volume of the system. Note that 
G a p ( 0 )  = 0, reflecting the fact that Q N - +  x as (RI  - Rj)  + 0. 

Equations (6), together with (3b)  and the defined averaging procedure, form the 
starting point for an exact analysis of the averaged Green functions for a multi-level per 
site system, using the methods of liquid-state graph theory. Clearly these equations are 
matrix generalisations of the corresponding equations in I. For simplicity we now confine 
our attention to a two-level system, with levels 0 and 1: extension of the following 
analysis to a greater number of levels per site is trivial but cumbersome. 

We begin by considering the locator series for the off-diagonal G;p(z), which results 
from expanding the inverse in equation (3b). The mth term in this series consists of all 
transfer matrix element products with m VIP bonds linking s s m + 1 sites. In what 
follows, i = 1 ,2 ,  . . . as the argument of a function is used as a shorthand for Ri ,  and 
d(i) = dR,. The averaged off-diagonal Green function, defined by (6b), may thus be 
written as 

GUP(12) = J . . . J pS-*g,(1, 2 , .  . ., s)%,"p(1,2,. . ., s) d(3) .  , .d(s) 
s = 2  

(7) 

where gs(l, 2 ,  . . . , s) is the normalised s-body distribution function for particles 
interacting via @"(see, e.g. ,  Hansen and McDonald 1986). %,f@(l, 2, . . . , s) stands for 
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the sum of all terms contributing to the off-diagonal G:p which involve exactly s sites. 
Each term on the right-hand side of (7)  can be represented in terms of composite 
graphs consisting of s points and five types of connectors. First, there will in general be 
connectors from the gs(l, 2, . . . , s) factors which we will comment on later. Second, 
there is a continuous and directed chain composed of the four types of V:b bonds, 
namely v, Vi ' ,  Vf and Vi'; in practice we will take Vi1 = Vio. The chain (which is 
continuous in both site and level indices) begins on level a of site 1, touches each of the 
s points at least once on either level 0 or level 1 or both, and ends on level /3 of site 2. We 
define a 0 stage (1 stage) as a contact of this V chain with level 0 (1) of a point. In 
traversing the chain, any point and any bond may occur any number of times, and all 
possible alternationsof 0 and 1 stages at successive interior stages are allowed, an interior 
stage being any stage other than the end stage associated with level a of site 1 or the end 
stage associated with level /3 of site 2. A factor of z;' is associated with each y stage. 
Thus %pP(l, 2, . . , , s) is the sum of all chain continuous graphs connecting s sites, 
beginning on level a of site 1 and ending on level p of site 2, and having any number of 
0 (1) interior stages; with each 0 (1) stage is associated a factor of zg ' ( z ; ' ) .  The initial 
(1) and final (2) points of the graphs in G"p(12) are not integrated over and are root 
points (RP) in graph-theory terminology. All other points are integrated over and are 
field points (FP); with each FP is associated a factor of p .  

The above specification of the graphs contributing to G"p(12) is a simple gen- 
eralisation of that used in I for the graphs contributing to the one-level averaged Green 
function G(12), and it is straightforward to derive the graphs in G"p(12) from those in 
G(12): consider any graph in G(12) consisting of s points and m stages; for each such 
graph there will be 2"-* graphs in G"P(12) with the same V-chain topology, reflecting 
the fact that each of the m - 2 interior stages may be a 0 or a 1 stage. There is thus a 
1 : 2m-2 correspondence between the graphs in G(12) and those in G"p(12). A similar 
generalisation for graphs contributing to the averaged diagonal Green function G"p(z) 
follows directly from equations (6a) and ( 7 ) ,  which give 

r 

z,G"P(z) = 6, + 1. . . jp3-'v"y(12)%yp(2, 1 , .  . . , s) 
y s = 2  

X g,(2, 1 , .  . . , S) d(2) d(3) .  . . d(s). (8) 
A topological analysis and renormalisation of the composite interaction graphs 

contributing to G"P(12) follows along lines similar to that given in I for the one-level 
G(12), to which the reader is referred for further details. We shall therefore merely 
summarise the relevant procedure. The graphs contributing to G"p(12) and G"p(z) are 
composite, and so both factors (%pp and gs) in the integrands of equations ( 7 )  and (8) 
contribute to their topological properties. The degree of connectivity of a composite 
graph clearly exceeds or equals the degree of connectivity of the associated chain- 
continuous V-bond component stemming from %,"p. As in I, therefore, one examines 
first the case of a perfectly random system for which &(l, 2, . . . , s) = 1 for all s, and 
considers the topology of the interaction graphs consisting solely of V chains which 
contribute to the resultant averaged Green functions (denoted in this limit by Gtb(12) 
and G$@(z)). The analysis of I requires slight modification due to the presence of more 
than one level per site, but the essential topological reduction again consists of elim- 
inating one-articulation points (1-Ap), thereby renormalising the stages or vertices, 
together with a subsequent elimination of one-bridge points (I-BP). Having performed a 
topological reduction for the perfectly random system, one then considers the additional 
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connectors arising from the gs( 1 , 2 ,  , . . s) distribution functions which characterise the 
quenched liquid-like structure: this aspect of the problem is identical to that in I. The 1- 
AP and 1-BP of the composite interaction graphs contributing to the averaged Green 
functions are then eliminated, and the topological reduction is thus complete. We now 
summarise the essential results of this procedure. 

From conventional liquid-state theory 
S 

where Q, stands for a particular combination of t of the points from 1 , 2 ,  . , . , s. The 
direct connector yl(l, 2, . . . , t )  is the sum of all terms connecting any pair of points in 
the set (1 ,2 ,  . . . , t )  without going through another member of the set. Taking into 
account these spatially short-ranged y connectors, a topological reduction of G"p(12) 
leads to the result 

where 

Elimination of the 1-AP is reflected in equations (10) by the presence of averaged 
diagonal Green functions c"p(z) at each renormalised stage; and elimination of the 1- 
BP is reflected in (lob) where the irreducible unit CwD(12) lacks 1-BP. Expressed in fully 
renormalised form (lacking 1-AP as well as I-BP), the function C"p(12) is said to be 
strongly irreducible and is specified as the sum of all composite graphs with two RP at 
the end stages (being labelled 1 and 2 and associated with factors of unity), a factor of p 
associated with each FP, no l - w ,  no 1-AP and an appropriate factor of GY'(z) associated 
with each interior stage. (Note in consequence that a P1(i,j) bond may be contiguous 
at F P ~  with, e.g., a Po(j, k )  bond by virtue of a factor of C'O(z) being associated with a 
stage at F P ~ . )  A given composite graph of s points in Cap( 12) consists of its corresponding 
chain graph component together with a factor from gs(l ,  2, . . . , s) with sufficient y 
connectors to render the composite graph strongly irreducible. An algorithm to deter- 
mine this factor is given in 0 5 of Wertheim's (1973) paper, and we do not repeat it here. 
The graphs in each Cap( 12) can be generated simply from those in the one-level C( 12) 
(see figure 3 of I). For each graph containing m interior stages in the renormalised C( 12) 
there will be 4"' graphs in the renormalised Cwp( 12) with the same V-chain topology, as 
follows from the fact that there are four possible decortions at each interior stage, namely 
any of the @p(z). For a particular combination of decorations, the nature of the 
connecting V bonds is uniquely determined by a, p and the choice of decorations; 
and the associated factor from gs(l, 2, . . . , s) is identical to that associated with the 
corresponding graph in C(12). In figure 1 we give an example of a composite graph in 
the one-level C(12), together with the corresponding graphs in C?"(l2), of which there 
are four since there is only one interior stage. Note that the graphs in e ' ( l 2 )  can also 
be generated from those in Coo( 12) simply by changing the last bond of the chain graph 
component from Vo0(j2) to P ' ( j2 ) ,  or from V'O(j2) to V"(j2), and similarly for C'O(12) 
and C"( 12). 
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g-fat tor Chain graphs 

A 1 2  

Figure 1. Example of (a) a composite, renormalised graph contributing to the one-level 
C(12), together with (b)  the corresponding graphs in "'(12). -0 denotes a V r  bond, 

G---O a Vi' or  Via bond, and O X  X X X 0 a Vi' bond. A factor of unity is associated with 

each w, ' a  factor of &(z) with the FP in ( a i ,  and factors of pC"(r), pcO'(z) ,  pG"(z) and 
pC''(z)  respectively with the FP of each graph in (b) .  

1 1  

, , 

Finally, equations (loa) and (6a) may be combined to give the following exact self- 
consistency equation for the averaged diagonal Green functions: 

z ,c"@(z)  = 6, + p  1 d(2)V")'(12)Gy6(2)HGe(21)GE@(z) (11) 
Y . & E  

with H"@(12) given from (106). 

3. Exact theory and some general features 

To avoid a surfeit of superscripts it is convenient to adopt a matrix notation. Equations 
(106) and (1 1) can be recast as 

H(12) = C(12) + p 1 d(3)H(13)G(z)C(32) (12) 

zG(z) = I + p d(2)V(l2)G(z)H(21)G(z) (13) I 
where I is the identical matrix, (z)"@ = z6SW@, and all other matrices are such that (M)"@ = 
M"@. Defining the Fourier transform of any matrix function M(R) by 

M(k) = 1 dR exp( -ik R ) M ( R )  

and using translational invariance, equation (12) may be inverted to give 

H(k) = C(k)(I - pG(z)C(k)) - ' .  (14) 

Equation (13) thus reduces to 

(15) 

= I + S(z)G(z)  (16) 

d k  
zG(z) = I + p 1 (2j1)3V(k)G(z)C(k)(l  - p G ( z ) C ( k ) ) - ' G ( z )  

where the self-energy matrix S(z) = S(G(z)) is thus defined and is such that G ( z )  = 
(2 - S(z))-l. 
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If C ( k )  is known explicitly as a function of k and G ( z )  then equation (15), which is a 
matrix generalisation of that derived in I, constitutes an exact self-consistency equation 
for the averaged diagonal Green functions, G"p(z). (Note also that although the above 
equations have been derived for a two-level system they apply equally to the general 
case of an n-level system, with the 2 X 2 matrix functions being replaced by n X n 
matrices.) As discussed in 8 2 and also I, however, although we do have an algorithm 
for the construction of all graphs in C(12), we do not have exact closed expressions for 
these functions, and must therefore resort to approximation. All the approximations 
discussed in I and I1 can be generalised to a multi-level system, but in this paper we 
consider only three such. First we examine the so called Hubbard approximation which, 
although somewhat simplistic, brings out many of the features of more sophisticated 
theories. In the following sections we then discuss single-site theories, in particular the 
SSCA/EMA and the MTA, to which the former reduces in the limit of a perfectly random 
system. Before we consider specific approximations, however, we will examine the exact 
equations just derived, in one particular limit, that in which the transfer matrix elements 
are independent of the levels a and B: Vafl(12) = V(12). With one possible exception 
(discussed below) this limit is unrealistic, but it illustrates clearly, and with minimum 
effort, two general features of the density of states of a two-level system. 

Remember that all graphs in each C"p( 12) have a factor of unity associated with the 
end stages; the only difference between corresponding graphs in the different C"p(12) 
functions lies in the nature of the first and last V bonds. But in the limit of all transfer 
matrix elements being identical, this difference disappears and the C"p(12) functions all 
coincide; the same argument applies to H"p(12). Thus, writing H"p(12) = HT(12) and 
Cup( 12) = CT( 12) for all a and p, equation (12) reduces to 

where 

GT(Z) = Goo(z)  + Go'(z)G'o(z) + G"(z).  
Similarly, equation (13) reduces to 

zG(z) = I + sT(z)lG(Z) 
where 1 is a 2 x 2 matrix with all elements unity, and ST(z) is given by 

sT(z) = PGT(z) 1 d(2)V(12)HT(21). (18b) 

Rearranging (18a) gives 

and summing all elements of the matrices together yields 
GT(Z) = (A(Z) - s ~ ( Z ) ) - l  

where 

4 2 )  = ~ 0 ~ 1 / ( ~ 0  + 21). (20b) 
Equations (17), and equations (20) and (18b), are mathematically equivalent to the one- 
level results derived in I, with GT(z) replacing the one-level G(z) and A ( z )  replacing the 
energy z .  
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With one important exception that we discuss shortly, two general results follow 
from these equations. First, for all possible values of the physical parameters (such as 
the number density, p,  of sites), there is always a band gap in the total density of states 
Do(E) + D l ( E ) ,  lying between the zero-order site energies eo and el > eo. This can be 
seen by considering the energy z = (eo + e1)/2 + iq. In the limit that q --.) 0+,  zo + z1 
vanishes and consequently A(z)  diverges. Thus from equations (20a) and (186) we see 
that GT(z) andST(z) vanish, and equation (19) reduces to G(z )  = z-'. Hence, for some 
energy interval between eo and el, G(z )  is real and the DOS must be zero; the existence 
and persistence of this band gap for the case of identical V"p(12) has also been seen in 
computer simulations of the model system (Bush eta1 1989b). For a more realistic set of 
non-coincident V"B(12) we will show later that, although the two bands centred about 
eo and el can overlap, they often do so less readily than one might expect due to a 
significant repulsion between the bands. A simple physical explanation can be given 
for this effect. Roughly speaking, the broadening of the uncoupled 0 and 1 bands is 
proportional to Vo0(12) and V"( 12) respectively. The bands are, however, coupled via 
the VO'(12) interaction, and this coupling produces a repulsion between the bands 
approximately proportional to VO'(12). When Voo( 12) and V1'( 12) exceed VO'(12) the 
broadening overcomes the repulsion and the two bands can merge; but in the converse 
case the repulsion dominates and there is a band gap between the two sub-bands. The 
case of identical V"B( 12) represents a crossover point at which the broadening effects 
just fail to overcome the repulsion. 

In passing we would add that Hubbard's (1963) original treatment of electron cor- 
relation effects in narrow energy bands effectively mapped that problem onto a two- 
level, one-electron, tight-binding model with identical V"p(12): with the replacements 
( E  - eo)-' + (1 - n-,)(E - To)-' and ( E  - el)-'+ n-,(E - To - Z)-' (where Zis the 
on-site 'Hubbard U'), and identifying Hubbard's G;(E) with X e , B  GiP(E), Hubbard's 
(1963) equation (51) (or (18) of Hubbard (1964)) reduces to our equation (3a) for the 
case Vi@ = Vij. Hubbard indeed found that the two sub-bands of the pseudoparticle 
spectrum failed to overlap. This feature is a direct consequence of the approximate 
mapping described above, is physically unsound in the context of the correlation prob- 
lem, and was alleviated in Hubbard's (1964) improved solution of the correlation 
problem. 

The second general feature of equations (17)-(20) above concerns band mixing, i.e. 
the contribution of 1-level states to the band centred about eo, and vice versa. From 
equation (19) we see that if z = eo + iq, then as q + O + ,  zo vanishes and @(z)  --f l /z l ;  
thus D1(e0) = 0, and similarly D0(e1) = 0. It can, however, be easily shown that, for all 
other energies, if Do(E) # 0 then Im &(E) # 0 and consequently D,(E) # 0, i.e. there 
is mixing throughout the sub-bands except at the energies E = eo and E = el. Again this 
general pattern carries over to the case of a more realistic set of (non-coincident) V"p( 12), 
with (usually) Do(&') = 0, D1(e0) = 0, and mixing throughout the rest of the bands. 

The aforementioned exception to the identical V"p(12) results described above 
occurs in the degenerate case where e o =  el. In this case, at the energy z = 
(eo + ~ ' ) / 2  + iq, zo = z1 = iq and in the limit q + 0+,  A ( z ) ,  instead of diverging, tends 
to zero. As aresult it can be shown that, at this energy, GT(z) and ST(,) are non-vanishing 
pure imaginary quantities. Further, it follows from equation (19) that Do(E) = D,(E)  
for all E ,  and neither DOS vanishes at the energy eo = el 3 3(e0 + el) .  Therefore, the 
above two general features are no longer valid and instead there are two identical bands 
arising from the doubly degenerate level at energy eo = el. We can extend this trivially 
to n levels divided between m degenerate sets, in which case the problem reduces to an 
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m-level problem, each level giving rise to the appropriate number of identical bands. 
This suggests a means of dealing with sets of p, d and f orbitals, although it must be 
remembered that in these cases symmetry conditions are important and consequently 
the transfer matrix elements within a given set of such orbitals will not in general be 
identical (see, e.g., Yonezawa and Martino 1976). 

We now turn to the first and simplest of the approximate theories for the DOS 
considered in this paper. As shown in I, the familiar one-level Hubbard semi-elliptic 
DOS arises from the two approximations H( 12) = C( 12) and C( 12) = V( 12)g2( 12) to the 
one-level functions, where g2( 12) is the pair distribution function. We expect this 
approximation to be qualitatively reasonable at low densities (although, as discussed in 
I, it does not reproduce correctly the exact p+ 0 limit). The obvious generalisation to 
a multi-level system is to approximate (12) by H(12) = V(12)g2(12), in which case the 
self-energy matrix reduces to 

S(z) = p J d(2)g2(12)V(12)G(z)V(21). (21) 

With a specified pair distribution function and set of transfer matrix elements, G ( z )  can 
be found via a simple iteration of equations (16) and (21); equation (5b) then gives the 
averaged DOS arising from each level. 

For all three of the approximate theories considered in this paper, we choose a set 
of Yukawa transfer matrix elements: 

V@@(R) = ( - V ~ U " @ / R )  exp( - ~ " P R ) .  (22) 
Here we take each V"@(12) to be a function solely of R = IR1 - R21, i.e. we assume 
spherical symmetry, a case strictly appropriate to s orbitals. A modified exponential 
transfer matrix element is known to be appropriate to several problems of physical 
interest, such as electronic transport in tightly bound bands of certain liquid metals and 
alloys, the impurity band of some doped semiconductors, and triplet electronic excitons 
in the impurity band of isotopically mixed organic solids; the specific choice of a Yukawa 
form is for the sake of simplicity. It should be noted that the sign of V"(R)  is irrelevant, 
because the DOS depends on Goo(z) and G"(z) ,  the constituent graphs of which must 
always contain an even number of q1 bonds. However the signs of V""(R) do matter, 
and physical arguments suggest that both Voaoo and Voa" should be positive. Although 
equations (16) and (21) are readily solved for any input g2(R) ,  for the sake of later 
comparison with the SSCA/EMA results we here consider a simple step function g2(R),  
corresponding to the low-density limit of a hard-sphere fluid with hard-sphere diameter, 
a: i.e. 

g2(R)  = - 0) (23) 
where 0 is the unit step function. 

With these choices of V"@(R) and g2(R),  the integration in (21) is trivial, yielding 
S(z) as a simple function of the G"P(2). Here it is convenient to define a set of reduced 
(dimensionless) variables. If we choose U as the unit of length and V$ = Vo/a as the 
unit of energy (so that the a"P are dimensionless), then we may define the reduced 
parameters 

z = 2/v; (24a) p* = pa3 &"P = Ly"@(Z 

and also the reduced functions 

S(2) = S(Z) /V$ G ( 2 )  = v; G(2) .  
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E 

Figure2. do(&) (broken curve), d , ( ~ )  (dottedcurve) 
anddo(€)  + dl(&) (ful1curve)intheHubbardmodel 
forp* = 0 . 1 , A ~  = l , a l l ~ ~ = 0 . 8 , a " = 0 . 7 , a "  = 1 
and (A) ao' = 0, (B) uOl = 0.3, and ( C )  a'' = 0.7. 

The reduced DOS from level cy is then given by 

d e ( & )  = V t D , ( & )  = -n-' Im[G""(E + ill)] 
where we decompose the reduced energy as 2 = E + iq (7 + O + ) .  The system has 
one other parameter, namely the reduced separation of the zero-order energies, AE 
= (c1 - E ~ ) / V $ .  We will set the zero of the energy scale at so that the zero-order 1 
level is at a reduced energy E = AE. 

In figures 2-4 we plot the resultant reduced DOS from level 0 (do(&), broken curve), 
from level 1 (d l (&) ,  dotted curve) and the total reduced DOS (do(&) + D1(&), full curve) 
for a variety of parameters. In figure 2 we consider a fixed density p* = 0.1, A E  = 1, all 
CY@ = 0.8, am = 0.7 and a'' = 1, and we investigate the effect of band coupling by taking 
three different values of aol (=do),  namely uO' = 0 (spectrum A), a'' = 0.3 (spectrum 
B) and aol = 0.7 (spectrum C). Spectrum A is the case of two uncoupled bands, each 
having the familiar semi-elliptic shape characteristic of the Hubbard approximation for 
a one-level system; note that the upper band is broader as a" > a@'. From B and C we 
see that one effect of a non-zero aol is to make each band asymmetric, in contrast to 
uncoupled bands which are always symmetric about the appropriate zero-order site 
energy. Also, as expected, the degree of mixing between the bands increases with a". 
More specifically, for aol # 0 there is mixing throughout the bands except at the zero- 
order energies c0 and E', as found previously for the limiting case of identical transfer 
matrix elements. The most pronounced feature is, however, the appearance of a band 
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Figure 3. As figure 2 but with a fixed U'' = 0.55 
and (A) p* = 0.08, (B) p* = 0.1 and (C) p* = 
0.12. 0.6. 

Figure 4. As figure 2 but with a fixed U'' = 0.55 
and (A) &I1 = 0.6, (B) $'I = 0.6 and (C) CP = 

gap in spectrum C of figure 2, which again arises because interlevel coupling, embodied 
in a", produces a repulsion between the sub-bands and eventually a band gap. (Note 
that a'' is significantly smaller than d 1  here: the existence of a gap is not dependent upon 
identical V;@.) The repulsion also manifests itself in the bottom (top) of the lower 
(upper) band moving outwards, such that the widths of the sub-bands in spectrum Care 
similar to those of the uncoupled bands (spectrum A). Finally, although spectrum B 
shows the above features, it is still rather similar to spectrum A, showing that, with the 
chosen p * ,  Ae, i yap  and a", there must be appreciable interlevel coupling before major 
qualitative changes occur in the total DOS. 

Numerical integration shows that all the spectra in figures 2-4 are correctly nor- 
malised to two. We can thus determine accurately the Fermi energy, E ~ ,  defined (at 
T=O)by 

J E F  (bo (€ )  + d1(e ) )  d e  = in (26)  
E -  

where E- is the lowest spectral band edge and n is the mean number of electrons per 
atom. Two cases are of particular interest. First, if n = 1 and there is no interlevel 
coupling, then the lower band will be half full and the upper band empty; by adding a 
non-zero aol we may investigate the effect of an excited level on a half-filled valence 



DOS of a spatial disordered two-level TBM 8695 

band (and within a one-electron description). For all three spectra shown in figure 2 we 
find in fact that the n = 1 Fermi energy is constant at = 0, and the total DOS at EF is 
approximately constant. Because of this, and since dl(0) = 0, it appears that at the 
Hubbard level of description and for n = 1, the excited level will have little effect 
on properties associated with Fermi energy electrons, such as the conductivity in a 
delocalised regime, 

The second case of particular interest is n = 2, corresponding to a full valence band 
interacting with an (initially) empty conduction band, a case important generally for 
metal-insulator transitions occurring in, e.g., divalent materials such as Hg or the 
alkaline earths, or for the rare gases; cF for the n = 2 case is marked in figures 2-4. 
Whenever there is a band gap we find that each sub-band is separately normalised to 
unity; consequently cF lies in the gap and the system is an insulator. As the band gap 
disappears, the DOS at becomes non-zero, at which point we would have a Wilson 
band-crossing insulator-metal transition were it not for the effects of disorder, which 
initially lead to states at being Anderson localised. An insulator-metal transition then 
occurs when states at cF in the pseudogap become delocalised. From figure 2 we see that 
band crossing, with the subsequent formation of a pseudogap, may be brought about by 
the diminution of ao', but it is more natural to regard the formation and evolution of a 
pseudogap as being consequent upon an increase in density. 

In figure 3, therefore, we take A E  = 1, all &@ = 0.8, aoo = 0.7, aol = 0.55 and a'' = 
1, and we progressively increase p* from 0.08 (spectrum A) through 0.1 (B) to p* = 
0.12 (spectrum C); spectrum B has the same parameters as those in figure 2, apart from 
a different aol chosen so that the band gap disappears for p* slightly less than 0.1. For 
p* = 0.08 there is a gap between the two sub-bands, in which cFlies for n = 2, the system 
being an insulator. As p* increases towards 0.1 (spectrum B) the two bands overlap 
forming a narrow, deep pseudogap in which lies cF. Since d(cF) is small, it is likely that 
states at the Fermi energy are Anderson localised, the system retaining its insulating 
behaviour. We would, however, add that while a knowledge of the DOS is an ingredient 
in a theory of localisation-which is one motivation for this work-it is not by itself 
sufficient to determine whether states in the pseudogap are localised or extended. 
Finally, as p* increases towards 0.12 (spectrum C) the two sub-bands broaden further 
and the pseudogap all but disappears; note further that in spectrum C the bands have 
broadened sufficiently to give a maximum in the total DOS at eF, which no longer lies in 
the remnant pseudogap. Two additional features in figure 3 should be noted. First, the 
pseudogap persists over a very narrow density range (0.09 6 p* 6 0.11). This arises 
from the steep band edges inherent in the Hubbard level of approximation; we shall see 
later that single-site theories predict a more prolonged pseudogap. Second, and in 
contrast to the n = 1 case discussed above, it is evident from spectra B and C in figure 3 
that do(&) that dl(&) are comparable at cF for n = 2: the excited level will, for obvious 
physical reasons, have an appreciable effect on properties associated with Fermi energy 
electrons. 

Finally, in figure 4 we take p* = 0.1, A& = 1, am = 0.7, aol = 0.55, all = 1, and we 
decrease in turn each of the from the value of 0.8 used in figures 2 and 3 to a value 
of 0.6. By diminishing &@we make the corresponding VaP(R) longer ranged; we would 
expect this to have a similar qualitative effect to an increase in a@. Thus, spectrum A in 
figure 4 differs from B in figure 3 only in having &ll = 0.6, which we see broadens the 
upper band sufficiently to eliminate the pseudogap and produce a maximum in the DOS 
at E ~ .  Similarly, spectrum B differs only in having $' = 0.6, producing a band gap by 
virtue of the longer-ranged p ' ( R ) ,  and spectrum C has go = 0.6, thus broadening the 
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lower band sufficiently to produce a maximum in the DOS at sF for n = 2. Note that 
spectrum Cis  symmetric about E = 0.5, despite the fact that p ( R )  differs from V'l(R). 
This arises because the Hubbard self-energy (equation (21)) depends on the second 
moments: 

J r @ y G  = p J d(2)Vn@(12)VY6(21)g2(12). 

The parameters in spectrum C of figure 4 are such that J p o o  = J i l l ' ,  although Jpol # 
J;lo1 and so it appears that these cross moments are less significant. This suggests that a 
study of the variation in the range parameters ita@ is to some extent superfluous, in that 
variation in the second moments can be adequately achieved via the strength parameters 
aaB. 

4. Single-site theories 

As in I we may specify an 'exact' single-site theory by two simple conditions: 

(i) The s 2 3-body structural correlation functions gs(l, 2, . . . , s) are approximated 
by the Kirkwood superposition approximation. 

(ii) Only single-site graphs are retained in C( 12), meaning those renormalised graphs 
(free of l-AP) in which only a single stage (which may be a 0 or a 1 stage) is associated 
with any point. 

The familiar Kirkwood superposition approximation amounts to retaining only the 
t = 2 direct connector, y2(12) = h2(12) ( =g2(12) - 1) in equation (9), which is thus 
decomposed approximately as 

Note that equation (12) (and thus equation (15)) is maintained, and the approximation 
is made directly to C(12); we denote the single-site approximation to C(12) by C,(12). 
The graphs in each C,"p(12) may be generated from those in the one-level C,(12) (see 
figure 4 of I) in precisely the same way as graphs in the exact C"P(12) are generated from 
the corresponding one-level graphs, as discussed in 0 2. A single-site theory leads to a 
better description of the DOS at higher number densities, since at lower densities multiple 
hopping between pairs of sites will be important, and such processes are omitted in any 
single-site theory. 

In practice, to produce a computationally tractable theory we must, as in I, make 
further approximations to the 'exact' single-site prescription. Many such approximations 
exist for the one-level case (see, e.g., Matsubara and Toyozawa 1961, Ishida and 
Yonezawa 1973, Roth 1974, 1976, Movaghar and Miller 1975), all of which can in 
principle be extended to the multi-level case (see, e.g., Yonezawa and Martino 1976, 
Yonezawa et a1 1977, Figueira et a1 1984). We will, however, concern ourselves with 
approximations that are topologically proper, meaning those that preserve equation 
(12) (and, consequently, (15)) and make approximations directly to the strongly irre- 
ducible unit C,(12). Two such theories are the MTA and the SSCA/EMA. The MTA is the 
simpler, corresponding to a perfectly random system in which the effects of liquid-like 
structure are neglected by setting gs(l, 2, . . . , s) = 1 for all s. In this limit, all graphs in 
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C,"/(12) except the first becomezero, and hence C,(12) = V(12). As described inI1, the 
SSCA/EMA involves neglecting all graphs in @(12) in which the interior h2(i , j)  bonds 
(arising from (27)) cross. This leads to the relation 

where H,(12) is related to C,(12) via equation (12). Equation (28), which is the basic 
approximation in the SSCA/EMA, provides a closure relation to equation (12), and these 
equations may be solved by exploiting analogies in conventional liquid-state theory, as 
we describe in the following section. In the limit of a perfectly random system, g2(12) = 
1, and equation (28) reduces to the MTA result which we now consider in more detail. 
With C,(12) = V(12), the MTA self-energy is given by 

dk  
S ( Z )  = p/  (2.n>3 V ( k ) G ( z ) V ( k ) ( l -  p G ( z ) V ( k ) ) - l .  

For 2 X 2 matrices we have the identity 

(det(M + N))(M + N)-I = (det M)M-' + (det N)N-' 

where det denotes determinant. Hence equation (29) can be rewritten as 

v(k) [G(z)V(k)  - p  det(V(k)) det(G(z))]. '(') = / det(l - p G ( z ) V ( k ) )  

With a specified set of transfer matrix elements, (31) can be evaluated to yield S ( z )  as a 
function of the @'(z). Equation (16) gives G(z )  as a function of S ( z ) ,  and a simple 
iteration of these two equations is sufficient to determine G(z )  and hence the DOS. 

Here we study the Yukawa transfer matrix elements of equation (22), which have 
the Fourier transform 

where k = Ikl. Equation (31) is considerably simplified by assuming that the V"p(R> all 
have the same R dependence (i.e., that ay' = (Y for any y ,  S ) ,  although the relative 
magnitudes may still differ through the an@. Some justification for this may be found in 
the Hubbard DOS studied in 0 3, where we found that variation of the amp alone gave 
sufficient flexibility in the choice of transfer matrix elements. The sole length scale in 
the problem is now the 'effective Bohr radius', aH = a-', which, together with 
Vh = Voa  (which has dimensions of energy) may be used to define the reduced par- 
ameters 

z t  = ./V;, (33a) p' = pa-3 

and the reduced functions 

St(z) = S(Z)/V;,  G ' ( z )  = V ; , G ( Z ) .  (33b) 
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Figure 5. D;?(E’) (broken curve), D ; ( E ’ )  (dotted 
curve) and D;I(E’)  + 0 ;  ( E ’ )  (full curve) in the 
MTA for AE‘ = 4,  uoo = 0.7, U’ ’  = 1 and (A) p’  = 
0.3, uo‘ = 0.45, (B) p’ = 1, a”’ = 0.45, and (C) 
p’  = 1, U”’ = 0.85. Note the different set of units 
used from those used in figures 2-4 and 6-8. 

-----_ 
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Equation (31) reduces to 

where k‘ = ka-’ and - ,u and - v are the solutions of 
det[(k’* + 1)1 + 4np’G’(z)a] = 0. 

Evaluating the integrals gives 

Finally, equation (16) can be rewritten in reduced form as 
G ’ ( 2 )  = (2 ’  - s’(z))-I 

where the non-zero elements of z’ are (z’)O0 = z‘ and (z’)ll = z’ - A&’.  Iteration of 
equations (35) and (36) yields G’(z ’ )  and hence the reduced DOS from level D given by 

D ; ( E ’ )  = VAD,(E’)  = - n-l Im[Gran(&’ + iq)] (37) 
where we decompose the reduced energy as 2’ = E’  + iq ( q  -+ O + ) .  

In figure 5 we plot D ~ ( E ’ )  (broken curve), D ; ( E ’ )  (dotted curve) and the full DOS 
D ~ ( E ’ )  + D ; ( E ’ )  (full curve) for A&’ = 4, p’ = 0.3 (spectrum A) or p’ = 1 (spectra B 
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andC),am = 0 . 7 , ~ ~ ~  = 0.45(AandB)ora0'  = 0.85(C),andd1 = 1.Thesespectrahave 
similar qualitative features to those observed at the Hubbard level of approximation, 
although note the different reduced units used in the two theories. We will give later a 
direct comparison of the MTA and SSCA theories, but at present comparison between the 
MTA and Hubbard theories will be qualitative. 

In spectra A and B of figure 5 we find that, although the coupling implied by a'' is 
not insignificant, D(, and 0 ;  differ little from the corresponding uncoupled bands. This 
was also true of a moderate a'' in the Hubbard theory (see spectrum B, figure 2), but 
unlike the latter the uncoupled MTA DOS has a pronounced asymmetry with a long, low- 
energy tail. The principal effect in going from spectrum A to B is thus simply a broadening 
of the bands due to increasing p r  . In going from spectrum B to C, however, we increase 
a'' to a value comparable to am and a", and this does lead to qualitative changes. As 
with the Hubbard approximation, the repulsion due to aO' produces a band gap and 
causes the outer band edges to move further outwards. Moreover, the asymmetry of the 
upper band is now reversed, so that the MTA DOS becomes qualitatively closer to that of 
the Hubbard DOS. In spectra A and C we have the usual pattern of mixing throughout 
the bands except at the zero-order energies. In spectrum B, however, we see that 
D;(O) is non-zero. This is understandable since the coupling is relatively small and 
D (0) for the uncoupled bands is appreciable at p' = 1, but it is a useful reminder that 
there are exceptions to the usual pattern of mixing. 

Numerical integration confirms that the MTA spectra are correctly normalised to two, 
and thus we may determine the Fermi energy, E ; ,  defined via equation (26). For n = 1 
and a single 0 band, the asymmetry characteristic of the MTA D;l ( E ' )  means that E ;  is 
blue shifted slightly to positive energies. Addition of an uncoupled excited level may 
lower E; due to states in the low-energy tail of the excited band, but introduction of 
interlevel coupling produces in general two competing effects. First, the repulsion due 
to a non-zero aol tends to push the 0 band to lower energies: this acts to decrease E ; .  
Second, the 1 band moves to higher energies, its low-energy tail is shortened con- 
siderably, and so states are effectively removed from the lower band; this tends to 
increase E ; .  In going from spectrum B to C in figure 5 we find the second effect to be 
dominant so that E ; ,  and consequently the total DOS at E ; ,  increases. Further, for 
relatively weak ao', D; ( E ; )  may be appreciable (see spectrum B). It appears therefore 
that at the MTA level of description, and in contrast to the Hubbard approximation, an 
excited level may have an appreciable effect on the nature of the Fermi level states of a 
half-filled valence band. 

We now consider n = 2, for which E ;  is marked in figure 5 .  As for the Hubbard DOS, 
whenever a band gap exists E ;  lies in the gap and we have an insulator at T = 0. The gap 
may be created by decreasing p r  or by increasinga", an example of the latter being given 
in spectrum C (the gap first appearing at aol = 0.8). Just before the gap opens up there 
will be a pseudogap, such as that evident in spectrum A.  On increasing p' the pseudogap 
becomes less pronounced, but it is still appreciable at p r  = 1 (spectrum B). Although 
the pseudogap persists over a large density range, however, it is primarily the position 
of E ;  and the character of Fermi level states which dictate the electrical properties of the 
system; and in spectrum B E ;  is in fact close to the maximum in the total DOS, where the 
states are likely to be extended giving rise to a metallic state. As p' is decreased, E; 
moves towards the pseudogap, but even in spectrum A the total DOS at E ;  is relatively 
large. It is therefore possible that states at E ;  are Anderson localised over a relatively 
small density range, although this can only be ascertained with confidence once a theory 
of localisation for a multi-level system has been developed. 
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5. The SSCA~EMA 

In this section we consider in detail the SSCA/EMA which, as judged by computer simu- 
lations on the one-level problem (Bush et af  1989a), is likely to be the most successful 
approximate single-site theory for the DOS. 

We need to solve equation (12) for the single-site H,(12) and C,(12), with the 
appropriate closure condition (28), to yield H,(12) as a function of G(z) .  Equation (13) 
(with H replaced by H,) then gives a self-consistency equation for G(z) .  The solution of 
this problem is aided by noting that equation (12) for an n-level system is analogous to 
the Ornstein-Zernike (02) equation of liquid-state theory for an n-component mixture 
(see, e.g., Hansen and McDonald 1986): 

h(12) = ~ ( 1 2 )  + d(3)h(13)pc(32). (38) i 
h(12) (~(12))  is an n x n matrix whose (a, /3) element is the total (direct) correlation 
function between species a and /3; p is a diagonal n X n matrix whose (a, a) element 
gives the number density of species a. The parallel would be exact, with H(12) replacing 
h(12), C(12) replacing c(12) and pG(z )  replacing p ,  except that G ( z ) ,  unlike p ,  is not 
diagonal. It turns out, however, that all the liquid-state results we use rely only on p 
being symmetric, a condition that G ( z )  also satisfies. There is a large literature devoted 
to solving (38) with a suitable closure condition, suggesting thereby that we may be able 
to solve equations (12) and (28) by exploiting the work in conventional liquid-state 
theory. 

In fact, as shown in I1 for the one-level problem, this is straightforward if we use the 
simple step functiong2(R) of equation (23) to describe correlation between site positions, 
in which case the closure relation (28) reduces to 

H,(R) = 0 R < u  (39a) 

c m  = V(R) R > U. (39b) 

Within the Kirkwood superposition approximation, and for any choice of g2(R) which 
vanishes inside a hard core, equation (39a) is exact since each H,"p (R) will always contain 
a factor g2(R); the essential approximation in this model is thus equation (39b). With 
the above choice for g2(R), and hence equations (39), one sees directly a similarity 
between the SSCA/EMA equations and those relating to the mean spherical approximation 
(MSA) of liquid-state theory (Lebowitz and Percus 1966) which, for an n-component 
mixture, consist of equation (38) and the following closure conditions: 

h"p(R) = -1 R < a,p (40a) 

c"~(R)  = -/3@."p(R) R > amp. (40b) 

Here, @'"p(R) is the interaction potential between molecules of species a and p outside 
the hard core, and amp = $(U, + up) where U, is the hard-sphere diameter associated 
with species a. The MSA for a mixture has been solved by Blum and Hoye (1978) for the 
case where W p ( R )  is of Yukawa form with a species-dependent pre-exponential factor 
(see also appendix A of Arrieta et a1 (1987) for typographical corrections). The solution 
has been simplified and extended by Blum (1980) and Cummings (1980). 

The MSA closure equations (40) are obviously similar to those of the SSCA/EMA with 
a step functiong,(R), equations (39). Thus, if we choose a set of Yukawa transfer matrix 
elements of the form (22), we ought to be able to modify the existing MSA solutions to 
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give a solution to the present problem. To this end we note two differences between the 
MSA and the current problem. First, in equations (40) the hard-core diameter amp is 
species dependent, whereas in equation (39) a is independent of the levels involved. 
Second, although equations (39b) and (40b) are formally equivalent, with 
Vm@(R) - -P@‘@(R), equations (39a) and (40a) are slightly different. As mentioned in 
11, however, the solution of the MSA with the hard-core condition, equation (40a), 
replaced by h”@(R) = 0 for R < amp is simpler. Because of these differences, and the 
previously mentioned difference between the symmetric G(z)  of the SSCA/EMA and the 
diagonal p of the MSA, we will summarise the method of solution. As for the MTA, we 
study the Yukawa matrix elements (22) such that amp = LY for all superscripts LY and p .  
With appropriate modifications we can therefore follow the MSA solution of Blum and 
Hgye (1978). 

The first step is a generalisation of the Wiener-Hopf factorisation technique intro- 
duced by Baxter (1968). Following Baxter (1970) and Hiroike and Fukui (1970), the oz 
analogue, equation (12 ) ,  can be written for R > 0 as 

2nRC,(R) = -Q’(R) + p dR’ Q’(R’ + R)G(z)QT(R’) 4 
2zRH,(R) = -Q’(R) + 2np dR‘(R - R’)H,(/R - R’/)G(z)Q(R’). (41b) lom 
Q(R) is a non-symmetric matrix function, which is zero for R < 0 and continuous for 
R > 0; Q’(R) and QT(R) are its derivative and transpose respectively. Note that we take 
the Baxter (1970) range parameters, beyond which the direct correlation functions 
vanish, to be infinite. For the Yukawa transfer matrix elements we have chosen, it can 
be shown that Q(R) must have the form 

The problem is therefore to determine the coefficients D and E, equations for which can 
be generated by applying the closure conditions (39) to equations (41). 

If we consider equation (41b) for R < a, then using equations (42) and (39a) we find 

-E = [I - (2np/a)h(a)G(.~)]D (43) 

where 

~ ( L Y )  = lom d R  e-aR RH,(R) (44) 

is the Laplace transform of RH,(R). Next, consider equation (41b) for R > a. If we 
subtract equation (43) from this (we are effectively using an analytic continuation of 
(41b) for R < a to the case R > a) and take the Laplace transform of the resulting 
equation, we get 

2zh(a)  (I - pG(z)q(a))  = -t e-2cuuE (45) 

where: 
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$(a) = jG dR e-"RQ(R) = [D + (1 - e-"')2E]/2a. (46) 
0 

Finally, using (39b), equation (41a) for R > ayields 

- (2nV0/a)a = D(I - pG(z)qT(a)). (47) 

Equations (43), (45) and (47) are essentially equivalent to equations (27), (33) and (29) 
of the Blum and Hoye (1978) thermodynamic MSA; equation (45) differs slightly because 
of the difference between the closure conditions (39a) and (40a). These equations are 
in principle sufficient to determine the three unknowns D, E and h(a) as functions of 
G(z ) .  The numerical solution of the equations is still, however, a non-trivial problem 
(see, e.g., Giunta et a1 1985, Arrieta et a1 1987) and further manipulations are necessary 
to render the problem computationally tractable. 

First, note from equations (13), (16), (22) and (44) that we have 

S ( z )  = -4npVoaG(z) dR  e-"RRH,(R) 

(48) 

Io' 
= -4npvoaG(z) h(a). 

If now we substitute for $(a) from equation (46), E from (43) and h(a) from (48), we 
find after some rearrangement that equation (45) gives 

S(z)a-IS(z)G(z) - e-nu(l  - e-"")S(z)G(z) + avo e-2nuaG(z) 

= - (@/PI S ( Z )  

and, similarly, (47) gives 
(49) 

S(z)  = p e-au.(l - Ae-"')DT - aG-l(z) 
(1 - e-"')* (' 4cUvo 

- 2nV0G-'(z)D-'a. (50) 
In manipulating and simplifying these and the following equations it is helpful to remem- 
ber that G ( z ) ,  hfa), a ,  S(z)  and z are symmetric matrices. Moreover it follows from 
equation (48) that the matrix product S(z)G(z)a is symmetric and hence S(z)G(z)a = 
aG(z)S(z). Other useful results follow from this; if, for example, we substitute for S ( z )  
fromequation (16), then we find that zG(z)a = aG(z)z. It isnow convenient to introduce 
the reduced variables defined in equations (24) and (25). If we also define D* = 
D/V,* a2 then equations (49) and (50) may be rewritten as 

S(z)a-IS(z)G(z) - e - e ( l -  e-")S(z)G(z) + e-Z.aG(z)j D* 

= - ( iu/p*)S(z) 

and 

- 2nG-l(z)D*-'a. 
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It can be seen that equation (51) ((52)) is linear in D* ( S ( z ) ) .  One way to exploit the 
linearity would be to iterate equations (51) and (52),  using the former to find D* as a 
function of S(z )  and e(,), and the latter to find S ( z )  as a function of D*  and e(,). 
Convergence of this iteration would yield S ( z )  as a function of G(z )  only; and iteration 
of this solution together with equation (16) would then give G(z).  We find, however, 
that the iteration of equations (51) and (52) is highly unstable, in agreement with the 
conclusion of Arrieta et af (1987) for the normal MSA problem that it is not practicable 
to use the linearity mentioned above. We must therefore treat equations (51) and (52) 
as simultaneous non-linear equations. 

The problem may be simplified by incorporating equation (16) directly into equations 
(51) and (52). This can be done by writing (16) in reduced form as S(z)  = 2 - G-'(z),  
and employing this in equations (51) and (52) to give 

and: 

p * ( l  - e-")2 
4& 

O =  D*'a-'(zG(z> - I) - p* e-&(l - ie-")D*'G(z) 

+ &I + 2~rG-~(z)D*-'aG(z). (54) 

Equations (53) and (54) may be solved by a Newton-Raphson technique to yield G(z )  
and D*;  equation (25) then gives the reduced DOS. These equations will clearly produce 
a multiplicity of solutions, and it is necessary to choose the physically correct one (see, 
e.g., Pastore (1988) for the analogue of this problem in the thermodynamicMSAcontext). 
Location of the correct root is aided by comparison with that for a known limit, such as 
amp = a for all a, p, the case of identical V@@(R) described in 8 3, or aol = 0 = do in which 
case the problem separates into two uncoupled one-level problems, or 0 = 0 in which 
case we have the MTA limit. Another check on the acceptability of a root is that the 
resultant total DOS be correctly normalised to two. Whether or not the correct root is 
located is highly influenced by the initial estimate used in the Newton-Raphson algor- 
ithm. To produce a reliable initial input it is sensible to proceed, stepwise, from a known 
limit; we have chosen to use the aol = 0 limit, from which we successively increase the 
a'' interlevel coupling. 

In figures 6-8 we plot d o ( e )  (broken curve), dl(&) (dotted curve) and the total DOS 
do(&) + d1(&) (full curve) for a variety of different parameters. In figure 6 we consider 
a fixed density p* = 0.1, A& = 1, k = 0.8, am = 0.7 and al' = 1, and we investigate the 
effect of band coupling by taking two different values of aol, namelyaO' = 0.55 (spectrum 
A) and 0.7 (spectrum B). Both these spectra, but especially A ,  retain remnant features 
of the uncoupled bands, with the characteristic asymmetry and long low-energy sub- 
band tails. As before, though, the coupling implicit in aol causes mixing throughout the 
bands except at the zero-order energies, and introduces a repulsion between the sub- 
bands which leads to the outer band edges moving further outward and the production 
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Figure6. do(&) (brokencurve), dl(&) (dottedcurve) 
and do(&) + dl(&) (full curve) in the SSCA/EMA for 
p *  = 0.1, A& = 1, & = 0.8, uw = 0 . 7 , ~ "  = 1 and(A)  
uol = 0.55, (B) uOl = 0.7. Note the change in scale on 
the DOS axis from that used in figures 2-4. 
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of a band gap at a'' = 0.7 (spectrum B). Computer simulations for the one-level per site 
case (Bush et a1 1989a) show that the lower limit of applicability of the SSCA/EMA (with 
a step function g 2 ( R ) )  is p* = 0.1. This choice does, however, allow a quantitative 
comparison with the Hubbard DOS if we note that spectra A and B of figure 6 have the 
same parameters as for spectra B of figure 3 and C of figure 2 respectively. We see that 
the results from the two theories differ greatly, the principal differences arising from the 
inherent asymmetry in the SSCA/EMA bands; computer simulations on the model system 
show that the SSCA/EMA reproduces the essential features much more adequately than 
the Hubbard level of description (Bush et a1 1989b). Despite this, however, and for the 
parameters specified above, the band gap appears at a similar value of a'' : a'' = 0.6 for 
the Hubbard theory and a'' = 0.7 for the SSCA/EMA. 

In agreement with the MTA, and in contrast to Hubbard, we find that then = 1 Fermi 
energy is blue shifted slightly to positive energies. Further, on increasing a", &,increases, 
as too do dl(cF) and the total DOS at E ~ .  As with the MTA, therefore, we see that an 
excited level can have an appreciable effect on the nature of Fermi level states for a half- 
filled valence band. The n = 2 Fermi energy is marked on figures 6 8 .  As before, E, lies 
in the band gap whenever it exists: such is the case for spectrum B in figure 6 and thus 
the system is insulating. On decreasing a'' the band gap closes (see spectrum A of figure 
6 ) ,  initially forming a (probably localised) pseudogap around E, until, on decreasing a'' 
further, E ,  moves out of the pseudogap leading ultimately to an Anderson insulator- 
metal transition. 
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Figure 7. As figure 6 but with a fixed a'' = 0.7 and 
(A) p *  = 0.3, (B) p *  = 1. In spectrum B the total 
reduced DOS peaks at 17. 

Figure 8. As figure 6 but with a fixed a'' = 0.7 and 
(A) p *  = 0.3, d = 1.2, (B) p* = 0.3, A& = 0.5, 
and ( C )  p *  = 0.3, A& = OS, a'' = 0.7. In spec- 
trum B (C) the total reduced DOS peaks at 12 (14). 

In figure 7 we examine the evolution of a pseudogap consequent upon a change in 
p* ,  using the same parameters as in spectrum B of figure 6, except that p* is increased 
to p* = 0.3 (spectrum A) and then to p* = 1 (spectrum B). In going from spectrum B 
of figure 6 to A of figure 7 we see that the density increase causes sufficient broadening 
of the sub-bands to close the band gap, but in going from spectrum A of figure 7 (p* = 
0.3) to spectrum B (p* = 1) there is little qualitative change; in particular the pseudogap 
essentially persists over the entire density range. As discussed previously, however, 
what is important is the position of in relation to the pseudogap rather than the 
existence of the pseudogap itself. As p* increases, both the minimum in the total DOS 
and (for n = 2)  move to progressively higher energies, but the latter increases less, 
so that effectively moves towards the maximum in the total DOS and will eventually 
cross a mobility edge into a region of delocalised states, resulting in a disorder-induced 
insulator-metal transition. This behaviour is evident in figure 7 where, for p* = 0.3 
(spectrum A), = 0.259 lies midway between the maximum (at E = 0.253) and mini- 
mum (at E = 0.265) in the total DOS, with + dl(cF) = 7.0 somewhat less than the 
maximum value (7.5) of the total DOS; in spectrum B, where p* = 1, = 0.283 is 
essentially coincident with the maximum in the total DOS, 

In figure 8 we show the effect of varying some of the other physically relevant 
parameters. Spectrum A has the same parameters as in spectrum A of figure 7, except 

+ dl(eF) = 16.5. 
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Figure 9. (A) oh(&' )  (broken curve), 0 ;  (E') (dotted 
curve) and oh(&')  + D ;  ( E ' )  (full curve) in the SSCA/ 
EMA for p' = 0.5, AE' = 2,  k = 0.5, uw = 0.7, uoi = 
0.55 and u" = 1 compared with (B) the perfectly ran- 
dom limit result (& = 0) obtained from the MTA for 

B 

1 

that we decrease the range of all the transfer matrix elements by increasing &to 1.2. This 
has the effect of narrowing the sub-bands sufficiently to create a band gap, the system 
thus being insulating for n = 2. In spectrum B we again use the parameters of spectrum 
A of figure 7, but now we decrease the zeroth-order energy gap to A& = 0.5. This 
naturally results in greater overlap between the two sub-bands and hence a build up in 
the total DOS about its sharp maximum value. Moreover the greater overlap increases 
the number of states in the lower sub-band. so that for n = 2, is at a slightly lower 
energy than the maximum in the DOS. In spectrum C we take the parameters of spectrum 
B, but reduce all from 1 to 0.7. This reduces the width of the upper sub-band and creates 
a band gap, which is to be expected since we now have the case of identical transfer 
matrix elements described in 3 3. In addition, the normal asymmetry of the upper band 
is reversed to give a shape more characteristic of that resulting from the Hubbard level 
of approximation. 

In figure 9 we compare quantitatively the SSCA/EMA with a step function g2(R),  and 
the MTA to which the former reduces in the limit U = 0. To do this we use the following 
expressions to interrelate the relevant variables in the two theories: 

P' = P*k-3 A&' = A&&-' &' = &&-I I l k ( & ' )  = &de(&). (55)  

Spectrum A is the SSCA/EMA result for p' = 0.5, A&' = 2 ,  & = 1, uoo = 0.7, U'' = 0.55 
and a'' = 1, corresponding to p* = 0.5 and A& = 2; spectrum B is the MTA result cor- 
responding to the same parameters except for &, which is zero. The sole difference in 
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going from B to A is thus the inclusion of a hard-sphere diameter 0, here set equal to 
the effective Bohr radius, aH = a-l. We see that this has a dramatic effect on the DOS, 
and in liquid metals that are adequately described by a tight-binding model we indeed 
expect to have & - 1: it is clear in these cases that the MTA is liable to produce a grossly 
inaccurate description of the DOS. 

6. Site-diagonal disorder 

Finally, we comment briefly on the incorporation of site-diagonal disorder into any 
single-site theory for the averaged Green functions. As mentioned in § 2, the ei, of 
equation (1) may be regarded as independent random variables in the site index, with a 
given probability distribution P ( e i o ,  e i l )  which is the same for each site. This problem 
has been discussed in detail in I for a one-level system. There, by considering the diagonal 
and off-diagonal averaged Green functions in which the site energies associated with the 
root points are constrained to specific values, a self-consistency equation was derived 
for the one-level G ( z )  (averaged over all configurations and site energies) which incor- 
porates P ( q )  and is valid for any single-site theory. For a two-level system, if we consider 
G@(z)  and G"b(12) in which the zero-order site energies of both levels associated with 
each root point are fixed, we arrive at the following generalisation of the result derived 
in I: 

G ( z )  = 1-1 deio J-: de,,  P ( E ~ ~ ,  e i l ) (z i  - S(z))-'. 

Here, zi has the non-zero elements (zi)O0 = z - E;,, and (z;)" = z - 
S ( z )  = S(G(z ) )  is the single-site self-energy which is independent of eiO and ei l  and 
which, viewed as a function of G(z ) ,  is identical to the (known) self-energy in the absence 
of site-diagonal disorder. Equation (56 )  thus provides a simple and practicable self- 
consistency equation for G(z) averaged over all configurations and site energies. Knowl- 
edge of S(z) as a function of G ( z )  for the case where diagonal disorder is absent (e.g., 
from equations (39 ,  or  (51) and (52)) is all that is required for an explicit evaluation of 
G ( z ) ,  and hence the DOS, when both topological and site-diagonal disorder are present. 
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